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1. Introduction

Completely integrable nonlinear partial differential equations arise at
various levels of approximation in shallow water theory. Such equations

possess soliton solutions—coherent (spatially localized) structures that
interact nonlinearly among themselves and then reemerge, retaining their

identity and showing particlelike scattering behavior. In this chapter, we
1
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2 Roberto Camassa et al.

discuss a newly discovered completely integrable dispersive shallow-water
equation found in Camassa and Holm (1993),

Uy + 20U, — Wy + Sun, = 20,04, + Uy, (1.1)

where # is the fluid velocity in the x direction (or equivalently, the height of
the water’s free sufrace above a flat bottom), i is a constant related to the
critical shallow-water wave speed, and subscripts denote partial derivatives.
Camassa and Holm (1993) introduce this equation, discuss its analytical
properties, and sketch its derivation. The present chapter shows numerical
results for this equation that illustrate the behavior of its solutions, with
particular emphasis on the case & = 0.

Equation (1.1) is obtained by using a small-wave-amplitude asymptotic
expansion directly in the Hamiltonian for the vertically averaged incom-
pressible Euler’s equations, after substituting a solution ansatz of columnar
fluid motion and restricting to an invariant manifold for unidirectional
motion of waves at the free surface under the influence of gravity. The
equation retains higher-order terms in this expansion (the right-hand side)
that correspond to higher-order conservation of the fluid energy. Dropping
these terms leads to the Benjamin-Bona-Mahoney (BBM) equation, or at
the same order, the Korteweg—de Vries (KdV) equation. This extension of
the BBM equation possesses soliton solutions whose limiting forms as
K =+ 0 have peaks where first derivatives are discontinuous. These solitons,
called peakons because of their shape, dominate the solution of the initial
value problem for this equation with x = 0. The evolution of a typical
initial condition is shown in Fig. 1. There, an initially parabolic pulse
steepens and eventually breaks into a train of peakons. These solitons travel
with speed proportional to their height and remain coherent after dozens of
collisions in the periodic domain.

The way a smooth initial condition breaks up into a train of peakons is
by developing a verticality at each inflection point with sufficiently negative
siope, from which a derivative discontinuity emerges. Remarkably, the
multisoliton solution of (1.1) is obtained by simply superimposing the single
peakon solutions and solving for the evolution of their amplitudes and the
positions of their peaks as a completely integrable finite-dimensional
Hamiltonian system. Equation (1.1) is bi-Hamiltonian; i.e., it can be
expressed in Hamiltionian form in two different ways. The sum of its
two Hamiltonian operators is again Hamiltonian, and their ratio is a
recursion operator that produces an infinite sequence of conservation laws.
This bi-Hamiltonian property is useful in recasting the equation as a
compatibility condition for a linear isospectral problem, so that the initial
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¥ic. 1. This space-time plot shows the evolution of the parabolic initial data
ux, 0) = max{0, 1 ~ 0.01(x — 10)?} as it evolves between ¢ = 0 and ¢ = 100 by Eq. (1.1} for
& = 0 in the periodic domain [0, 100).

value problem may be solved by the inverse scattering transform method

{Camassa and Holm, 1993).

After briefly discussing the Boussinesq class of equations for small
amplitude dispersive shailow water equations. in Section II we derive the one-
dimensional Green-Naghdi equations {Green and Naghdi, 1976). In Section
111, we use Hamiltonian methods to obtain Eq. (1.1) for unidirectional
waves. In Section I'V, we analvze the behavior of the solutions of (1.1} and
show that certain initial conditions develop a vertical siope in finite time. We
also show that there exist stable multisoliton solutions and derive the phase
shift that occurs when two of these solitons collide. Section V demonstrates
the existence of an infinite number of conservation laws for Eq. (1.1} that
follow from its bi-Hamiltonian property. Section VI uses this property to
derive the isospectral problem for this equation and others in its hierachy.

II. The Green-Naghdi Equations

A. BACKGROUND

Certain small-amplitude fluid flows in thin domains, e.g., internal waves
in coastal regions, satisfy the shallow-water approximation, but rot neces-
sarily the hydrostatic pressure condition {Wu, 1981). Corrections to account
for nonhydrostatic pressure effects have heen developed hy Peregrine (1967),
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Green and Naghdi (1976), Wu (1981), and Camassa and Holm (1992).
These authors use standard asymptotic perturbation theory to show that
nonhydrostatic pressure effects cause additional wave dispersion. The equa-
tions they derive fall into the Boussinesq class of approximate dispersive
equations for wave elevation # and mean horizontal fluid velocity u. The
same Boussinesq tradition of approximations includes the KdV and BBM
equations, when restricted to propagation in only one direction by, say,
imposing a linear relation between elevation and fluid velocity. The
structure of these equations has led to a reasonably complete understanding
of the solutions at this level of approximation. In particular, the Korteweg-
de Vries equation admits solution by the inverse scattering transform method
and, thus, allows a complete description of its nonlinear wave interactions.
Here we go to higher-order approximations within the Boussinesq class,
while retaining the Hamiltonian structure and associated conservation laws
inherent in the starting equations, by directly inserting an asymptotic
approximation in the Hamiltonian for Euler’s equations in three dimensions.
We consider an inviscid incompressible fluid of uniform density with
velocity components 1 = (2, ») in the horizontal x = (x, ») directions, and
w in the vertical {g) direction. The fluid is acted on by gravity and an
external pressure and is moving in a domain with an upper free surface at
7z = £(x, ¥, 1) and a prescribed, possibly time-dependent, bottom boundary
at z = —hfx, y, ). The dynamics of such a fluid is governed by Euler’s
equations, with 3D substantial derivative, d/di = 8/8¢ + u+V + wd/dz,

du 1
—=—=Yp,

d
t ? .1

where p denotes the fluid’s uniform density, g is the constant acceleration
duc to gravity, and p is the fluid pressurc. Incompressibility implies the
fluid velocity is divergenceless:

dw

Viud =0 (2.2)

The kinematic boundary conditions appropriate for such an inviscid fluid are
w— ¢ at z = {(x, », 1),
¢ . LCe, », D) 2.3)
W= —h atZ="h(X,y,t)s

where £ = d¢/dt = 3/8t + u - V¢ and u is tangential on any vertical lateral
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boundaries (free-slip). The dynamic boundary condition is (neglecting
surface tension)
p=p atz=1{xy10, (2.4

where jpi(x, v, t) is the prescribed external pressure.

Euler’s equations have several fundamental properties that are worth
preserving when making further approximations. First, they are the Euler-
Lagrange equations for a constrained action principle that is stationary
under arbitrary variations of the Lagrangian fluid labels. Second, passage
from the Euler-Lagrange description in terms of Lagrangian fluid labels to
the Hamiltonian description in terms of Eulerian fluid velocity leads to 2
Lie-Poisson bracket. Third, these equations possess a Kelvin theorem that
i related to the advection of patential vorticity and that leads to an infinity
of conserved quantities.

These conserved quantities are associated with particle relabeling sym-
metry in the Lagrangian picture and the corresponding degeneracy of the
Lie—Poisson bracket in the Eulerian picture. For discussions of the inter-
relationships among these properties, see Abarbanel and Holm (1985),
Holm (1985), and Miles and Salmon (1985). In this section we will discuss
how to preserve these three properties—action principle, Hamiltonian
structure, and infinity of conservation laws—when making further approxi-
mations, particnlarly when restricting to columnar fluid motion in vertically
thin domains.

Our approach is to use the principle of generalized coordinates to make
approximations directly in an action principle for Euler’s equations, by
choosing a simplifying ansatz for the form of the solution before taking
variations. Just as in the case of an ordinary constraint, approximations
that restrict the form of the solution (and, thus, the class of allowed
variations) typically change the equations of motion, and so the accuracy of

the approximate dynamics obtained this way must be verified by some other
means. In the case at hand, the solution ansatz we choose when substituting
the simplified form of the solution into the action principle is obtained from
a balance in the Euler equations at first order in an asymptotic expansion of
the solution in powers of the thin-domain aspect ratio. (See. €.g., Peregrine
(1967) or Camassa and Holm (1992). The solution ansatz arising from this
balance corresponds to columnar motion of the fluid in a thin domain.

Euler’s equations (2.1) follow from an action principle 6£ = 0, with

I
L= S dt S dxdyS dz DlA? + w?) — gz — pD™' = 1], 2.5)
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where D = det(D{'), where D{' = (8/'/8x") is the 3 x 3 Jacobian matrix for
the map from Eulerian coordinates to Lagrangian fluid labels, /(x, z, 1),
A =1,2,3. These Lagrangian labels specify the fluid particle currently
occupying Eulerian position (x,, X, X3} = (x, 2). They satisfy the advection
law, 0 =dM/dt = 811/3t + v'Df, thereby determining the velocity
components (v,, v,, v3) = (u, w) in the action principle as

vl = —@ Y, a8, i=1,2,3. (2.6)

Variations in (2.5) with respect to /* yield Euler’s cquations (2.2) with
kinematic boundary conditions (2.3). The constraint D = I imposed by the
Lagrange multiplier p (the pressure) implies incompressibility. For more
details, see Abarbanel and Holm (1985), Holm et 4/. (1988), and Miles and
Salmon (1985).

B. GreEEN-NAGHDI EQUATIONS

By using conservation of energy and invariance under rigid-body
transformations, Green and Naghdi (1976) derive an approximate form of
Euler’s equations appropriate to columnar fluid motion in vertically thin
domains. Miies and Salmon (1985) reecover the Green-Naghdi equations
from an action principle, by restricting the action principle (2.5) to variations
essentially of the form {columnar motion ansatz)

M =1x1, A=1,2,

s zth - @.7
= C+ R A=3
from which (2.6) implies
u=ux¢ =x, w=—-h—(@+hV-u (2.8)
The Green-Naghdi equations are
an
E = —V « pu,
2.9)
oun 1

i
—=-~u-Vu-—gV(p—h +—-VA ——BVh,
a1 u-Vu -~ gV -~ k) p .
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where the quantities A and B are given by
A = i (—%ij + 1),

. (2.10)
B = n(zi — k),
with, e.g., i = d’n/dr’.
The Green-Naghdi equations are also rediscovered in Bazdenko et af.
(1987) and are derived directly from the Euler equations (2.1) in Wendroff
(1992) by substituting the ansatz (2.8) into (2.1) and integrating in z.

The Green-Naghdi equations conserve the energy
Hgy = %j dxdylna® + nk” + g?h(V -uy + gn — K], (2.11)
which may be obtained {rom the Buler energy,

¢
Houer = & E dxdy [ dzu? + w? + 2gzi, 2.12)

it

by substituting the solution form (2.8) for w and explicitly performing the
z integration. Holm (1988) observes that the Green-Naghdi equations (2.9)
may be expressed in Lie-Poisson Hamiltonian form when the energy Hgy
is taken as the Hamiltonian.

C. GreeN-Naonapt Louations v ONE DmENsioN

We now specialize the Green-Naghdi equations (2.9) to the case of
one spatial dimension and constant bottom topography, h = Ay = const.

Namely,

ne+ (ﬂu)x = 0,
111 2.13
U, + uly + gy, == [—rf'(ux, + Uy — uﬁ)] , (2.13)
73 x
with conserved energy
1 1
Hp =3 S dx[wz + Uy + 807~ ho)z]- (2.14)

Equations (2.13) are expressible in Lie-Poisson Hamiltonian form in
terms of Hamiltonian H, 5 and dynamical variables # and m, the latter of
which is given in one dimension for flat bottom topography by

- Ju

1 1 ,.
= nu — g{naux)x = nu + §(n2n)x- (2.15)
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In terms of the variables # and m, the Green-Naghdi equations are
expressible in Lie-Poisson Hamiltonian form as

my am + mé no OH p/0m 2.16)
f, - 617 0 §H1D/5ﬂ ’ )
where the variational derivatives are given by the coefficients of dm and

én in

SH\p = j dxuém + (=4 — L2 + gl — A on).  (2.17

Note that had we modeled [, w”dz for the kinetic energy due to vertical
motion in (2,14) by ho#2/3 = hy(nu)2/3 instead of by n3u2/3, the equations
resulting from the Lie-Poisson Hamiltonian form (2.16) would have been
the Boussinesq equations (Whitham, 1974):

0,

B + (L),
kg (2.18)

= Mere -

3

U, + Ui, + g1,

It so happens these equations also rise in an asymptotic expansion of the
Green-Naghdi equations (2.14) in terms of the small parameters 8 — hy/L
(the thin-domain aspect ratio) and o in 7 = Ay + of (the small wave
amplitude), when the balance « = O(&?) is assumed, and dimensional scales
are taken as u — a~gyhott, x = Lx, and t = tL/\g,ky.

From the Boussinesq equations, further asymptotics and restriction to
unidirectional propagation in a frame moving near the critical wave speed
Cp = \/g_ho leads to the Korteweg—de Vries (KdV) equation (Whitham, 1974),

U + Colty + Suth, + Leohit,, = 0, (2.19)

or, with the same order of accuracy in the thin-domain expansion, the
Benjamin-Bona-Mahoney (1972) (BBM) equation,

u, 4 cott, + Fru, — Lhu, =0 2.20)

In contrast to making asymptotic expansions in the equations of motion, as
in the derivations of the KdV and BBM equations, our approach is to make
approximations in the Hamiltonian (2.11) that produce unidirectional
propagation and preserve the momentum part of the Lie-Poisson structure
(2.16).
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A New Integrable Shaliow Water Equation 9

H1. The Unidirectional Model

In this section. we make a unidirectional approximation in the Green-
Naghdi Hamiltonian system that relates m and #, but preserves the
momentum part of the Lie-Poisson structure (2.16).

We begin by noticing that 1/¥m is in the kernel of the operator
ma + om:

(m8+6m):/-%=—2—'3-:’7+ avm = 0.

Using this and (2.16), the time evolution of the functional C = §*2~/m dx
is given by

4 +m\/]»:?a'x— T m, dx = Mé{’:a Y (3.1)
dt Tl 2Vm (X = o Of Todm T

-0

where we have performed an integration by parts.

Thus, if # = const m , the functional C is a constant of motion, and the
integral manifold {*< 5 dx = const {*Z+/m dx is invariant under the motion
generated by the Lie-Poisson structure (2.16) for any Hamiltonian.
The constant in this relation between m and 5 is chosen to give the right

dimensions. We will set
m
=h J_-, 3.2
n o FiaCo (3.2

and because # = A, as |x| = oo, the boundary conditions on m will be
assumed to be m — hycy, as |x| = 0. The functional C is the Casimir for
md + dm and so we will refer to the manifold (3.2) as the Casimir manifold
for (2.16).

We now restrict to the manifold (3.2). The Hamiltonian energy (2.11)
becomes

| B , m h ’ m
Hom — LT AL 2 2 _ 2 2 .
D=7 S_w [ho oo ( + 3, mux) + com — 2ghg oo + gho] dx
(3.3)

The term proportional to the Casimir can be ignored in this expression,
because on the Casimir manifold (3.2) only the momentum part of the
Hamiltonian operator in (2.16) needs to be considered, and the Casimir C
is in the kernel of the Hamiltonian operator md + dm. Rearranging the
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constant term in order to assure convergence of the integral yields

1 £+ m A 1 it

(3.4)

Expression (3.4) for the Hamiltonian and the relation (2.15) provide an
implicit definition of m in terms of u, which we are not able to make
explicit. We can, however, find an explicit approximate expression of m
when working in the small amplitude regime.

We scale # — o and look for m in the form

m = hycy + am, + o*m, + a’my 4 ... (3.5

Truncating at O(«®), the Hamiltonian becomes
1 g 1 1 By
Hp== W bt + 2wk} + =¥ —mu* + Zmul | dx
1D ZK_QI:O‘(G 3 % 2% \e 1 cy T

1 (e
+ ECDS (amy + o®my + a’my) dx, (3.6)

By definition, m is the variational derivative of the Hamiltonian with
respect to « (as in (2.15)), and so we must have the consistency condition

m = hyco + amy + s + Ole®) = ——

1, 1, "
=§DmICO + o "2‘Dm100 + hou - ?uxx

1 + .2 2,2 1 htz)
— Dy (W + hup) + Yo mou — ——(m )y,
0

i
2{ 2+
+ o ( Dy + ac, 3 S

2
@.7)

where D, denotes the adjoint of the Fréchet derivative of m with respect
to u. '
Because we seek an evolution equation for m that retains terms up to
Q{«), we only need to completely determine the form of 2. Notice that
divergence terms (perfect derivatives) in the expressions of m, and m, can
be ignored, since these terms enter the Hamiltonian (3.6) linearly at O(®)
and O(e), respectively.
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The consistency condition at order O(1) through (o) leads to the
following expressions for m,, m,, and m;:

i

Ry
my = 20t — @y, My = c—u2 + ayuz?,

1]

he 3 2( hg 01) 2
My =——>u +—|a, — — — — Juu;.
P 2e, 26

(3.8)

where &, and a, are two undetermined coefficients. With these expressions
for m;, | = 1,2, 3, the Hamiltonian (3.6) (truncated at order O(¢>)) can be
rewritten as

Hyp = H, + H,, (3.9
where
- +o O‘{2 400
H1 = thoC()g wdx + ? g (Zhouz + alu%)dx (3.10)
and
2 4w 3 k] 0
~ @ h o 2
= S_m (?0 + a0 — a1>u§‘ dx + 5 S_m (-3—2_—(; hot® + ZaZuuf) dx.

(3.11)

The equation of motion we are seeking for m up to order «,
m = hycy + amy, can now be determined by H,. Keeping in mind that
when restricting to a submanifold the flow generated by the restricted
Hamilitonian rescales time by a factor 2 (Olver, 1988), the Hamiltonian
(3.10) must be rewritten as

- 1 +oo 1 +o0
H, 22“25 m,udx+§c0S iy dx. (3.12)
The approximate equaticn of motion for m on (3.2) is therefore
dH, o 1
m, = —(mad + 3m)3r;11 = -5 (md + dmu — S com,. (3.13)

We now fix the coefficients @, and a, by requiring that A, is also con-
served by the flow (3.13). After some algebra, this leads to the following
linear system determining a4, and «,:
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so that
2 A
a, mghg, a2=§?';. (3.15)
The final expression for m up to Ole) is therefore
m = hoco + amy = MoCo + a(2hatt — 3h3uy), (3.16)

and in terms of u the equation of mation (3.13) becomes

b2 L2 - 1 2 L 2
U, = 3Ry, t oty ¥ %auux — §hHGCoUxyy = TORGU Uy + GOty .
3.17)

Dropping the terms on the right-hand side of this equality gives a BBM-
like eyuation, cf. (2.20). Thus, (3.17) can be seen as the BBM equation
corrected by retaining higher-order terms (selected by the Hamijltenian
approach) in an asymptotic expansion in terms of the small parameter o.

Since the cxtra terms are quadratic in «, the linearized version of (3.17)
has the same dispersion relation w(k) as for a BBM equation written in a
frame moving with velocity ¢,/2. Substitution of the mode ¢**~** into the
lincarized equation yields

_ 1+ k*h5/6
@ = Ty

As argued in Benjamin ef a/. (1972), dispersion relations of this kind
are preferable to the KdV dispersion @ = ¢ok(1 ~ h3k?/6), as the large k
waves do not propagate with unbounded phase speed. On the other hand,
in the long-wave limit hok — 0, (3.18) coincides with the dispersion
relations for KdV, BBM, and Green-Naghdi, as well as for the full linearized
shallow-water wave problem, @ = gk tanh k& . Figures 2 and 3 show the
comparison among the phase speeds w/k and the group velocities dw/dk,
as functions of kyk for Eq. (3.18), linearized water waves, BBM, and KdV.
The BBM relation and Eq. (3.18) bracket the water wave dispersion relation
for all wave numbers.

Notice that, unlike the usual derivations of the KdV and BBM models
(Whitham, 1974), Eq. (3.17) is obtained through an asymptotic expansion
in only one small parameter, «, the amplitude of the wave ¢levation. Of
course, the columnar motion ansatz (2.8) is physically a good approximation
for wavelengths that are large compared with the undisturbed water depth,
and 5o a balance between the small (shallow-water) parameter € and the
amplitude parameter « is implicit throughout the derivation of the Green-
Naghdi eguations (2.14) as well as in the present derivation of (3.17).

(3.18)

; {f;'z&%x‘
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3
2.5 .
) Eg3.1¥
k 2 ww
BBM
1.5
Kdv
0.5 1 1.5 2
hpk

FrG, 2. Comparison among the phase speeds w/k for Eq. (3.18), linearized waler waves
(WW), BBM, and KdVv.

The restriction to the Casimir submanifold (3.2) is equivalent to the
unidirectionality assumption in the usual derivations of the KdV (2.19) and
BBM (2.20) models from the Boussinesq system (2.19) (see, e.g., Whitham,
1974; Olver, 1984). In fact, using (3.16) and expanding (3.2) gives

2
[= J% [u - 5’?;9,;} + 0(@). (3.19)

Notice that in a long-wave, thin-domain approximation the double
derivative term in (3.19) wouid acquire a factor 2 = O(«), and so at leading
order (3.19) is simply { = Vh,/gu.

3
do 3
ak Eg3.18
1 WWwW
BBM
0.5 1 p 2
k
2 o
-3 Kdv

Fre. 3. Comparison among the group velocities dw/dk for Eq. (3.18), linearized water
waves (WW), BBM, and KdV.
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Rescaling Eq. (3.17), dropping «, and going to a frame of reference
moving with speed 2x = ¢;/2 reduces the equation to the form

Uy — My + ot & 2w, = 20, 4 2uu | i, (3.20)

which is the standard form we will use from now on. Notice that {3.20), like
BBM, is not Galilean invariant, i.e., not invariant under & — u + &', f = {,
x — x + k't. Thus, Eqg. (3.20) is best secen as a member of a family of
equations parameterized by the speed ' of the Galilean frame. Equation
(3.20) may be rewritten in nonlocal form as

+ te
dye "y, = _K dy e N, + Ju,,), (3.21)

o0

u,+uux+:cj

by using the identity
(1 - e H = 2500). (3.22)

In this form, dropping the quadratic terms on the right-hand side of the
equation gives the equation studied by Fornberg and Whitham (1978). The
similarity between the Fornberg and Whitham equation and the present case
(3.20) is even more apparent when the Fornberg and Whitham equation is
written in the local form

Uy — Mygr + U T 2000 = ety + ouly,,. (3.23)

Fornberg and Whitham show that traveling wave solutions of this equation
have a peaked limiting form. Moreover, asymmetric solutions can develop
a vertical slope in finite time.

Recently, Rosenau and Hyman (1992) have investigated a similar
nonlinear dispersion equation, namely,

u, + ul, = w31".\"")::{ — Ul = _%.'(uz)xxx- (324)

This equation has traveling wave solutions that interact almost elastically
and have compact support.

In what follows, we will concentrate on the scaled form (3.20) of
Eq. (3.17). We will consider the initial value problem with u defined on the
real line with vanishing boundary conditions at infinity and such that the
(rescaled) Hamiltonian

+co
H = %S & + u?) dx (3.25)

-y

is defined (bounded).
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In accordance with (3.13), H, generates the flow (3.27) through

m=u— Uy, m, = —[(m + x)d + a(m + K)]-f%. (3.26)

The Hmit &

Il

o,

My~ My, = —3un, + 2, + uu,,

-3 — Lu? — uu,) (3.27)

although unphysical (since it corresponds to zero wave speed), is of
particular mathematical interest and will be given special attention through
the next section.

1V. Solution Dynamics

This section discusses the evolution of solutions to (3.20) when x = 0. In
this case, an inflection point with sufficiently negative slope will develop
verticality in finite time. This singularity leads to a traveling wave with
discontinuous derivative at its peak. The traveling wave solution computed
for Eq. {3.20) also shows explicitly, in the limit x -» 0, that the profile
acquires a corner at its peak. We show that the N-soliton solution can
be expressed as a superposition of these peaked traveling waves with
time-dependent amplitudes and phases. We also give the closed-form
sohition for the two-gsoliton dynamics and compute the phase shifts for a
binary collision.

A. STEEPENING LEMMA

We now show that initial conditions exist for which the solution of
Eq. (3.27) develops a vertical slope in finite time. Let us assume that the
initial condition is such that it has an inflection point at x = ¥, to the right
of its maximum, and it decays to zero in each direction sufficiently rapidly
for H; in (3.25) to be finite. Consider the evolution of the slope at the
inflection point. Define s as w, (¥(f), £). Then (3.21) (with k = 0) yields an
equation of evolution for s (using u,. (%), ) = 0),

‘—jf—i-sz—l erdysgn(JE—y)e'm"’sél lu!z+u2 =0. (4.1
dt 21 . N2
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Integrating by parts leads to

dS 1 2 I + —!X’—yl 1 2 2 1 2i=
—_— = e _Ej dye iueru | Zu(x:r)

1, 1,
< ~25" + 1% ). (4.2

Then provided #%(%, {) remains finite, say less than a quantity M, we have

ds 1, M
s la M 4.
4= 3%ty (4.3)

which implies for s initially < —vM,
5s mcoth(a + %m) (4.4

where o is a negative constant that determines the initial slope, also
negative. Hence, at time ¢ = —2¢+vM, the slope becomes vertical. The
assumption that M in (4.3) exists is verified in general by a Sobolev
incquality. In fact, M — 217, since

+00
max [#2(x, )] =< [ dx(u® + u2) = 2H, = const. 4.5)
xeR Jewo
Remark. If the initial condition is antisymmetric, then the inflection
point at u =0 is fixed and d¥/df = 0, due to the symmetry (u,x) —
{ u, —x) admitted by (3.27). In this case, M = 0 and no matter how small
[s(0)] (with s(0) < 0) vertically s = ~co develops in finite time.

The steepening lemma indicates that traveling wave solutions of (3.27)
may not have the usual sech-like shape since inflection points with negative
slope lead to unsteady changes in the shape of the solution profile.

By a similar argument, the development of verticality in finite time also
occurs for xk = 0.

B. TRAVELING WAVE SOLUTION

We seck solutions of (3.27) in the traveling wave form u(x,?) =
Ulx — cf), with a function U that vanishes at infinity along with its first and
second derivatives. With these boundary conditions, substituting U in
(3.20) and integrating twice yields

2k - U

(Ul)z = UZC -

5 (4.6)
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where primes denote differentiation with respect to x — of. The usual
jnterpretation of the right-hand side of (4.6) as a potential energy term
shows that solitary waves exist only for ¢ = 2r; i.¢., they travel at super-
critical speed, and their amplitude is given by

Upax = € — 2K. @.7

et e S mm

i

{4.2)
Integration of (4.6) shows that the function I/ is defined implicitly by
/@ have c
e_(x_cz) = - C ¥ + 1 (4_8)
“.3) v+ CJ \v=~1)’
) where
’ c
C= 4.9
c— 2K @.9)
4.4 and v is related to U by
c—-U
= [ ——— 4.1
e, also v c—2k - U (4.10)
f)‘bgize In the limit of small-wave amplitudes and so, by (4.7) of near-critical
3 v

speeds, ¢ — k — 0, so that C — 0. Equation (4.8) in this limit reduces to

@.5) U=l-n Sechz[ / - ct)] +0lc~ &Pl @.11)

i.e., the same limit form of the solitary wave solution of the Green-Naghdi

flection system (2.13). In the opposite limit of x — 0, the curvature of U at its
)= maximum increases and U becomes
w small '

U = ce ==l 4 O log r). 4.12)

f(3.27) ‘ Indeed, Eg. (4.6) at « = 0 reduces to
IEgative (U'_ C)[(U'}z _ UZ] - 0’ (4.13)

’ I and so the solution (4.12) can be seen as the composition (vanishing at
me also

infinity) of the two exponentials that satisfy (4.13). The limiting solution
{4.12) travels with speed ¢ and has a corner (that is, a finite jump in its
derivative) at its peak of height c.

o 0 = C. N-SOLITON SOLUTIONS

irst and ivated by the form of the travel lution (4.12 ke th

¢ U in Motivated by the form of the traveling wave solution (4.12), we make the

foilowing solution ansatz for N interacting peaked solutions:

N
@6 u(x, ) = Y, pi(tye "l (4.14)
) : ic1
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Hence,

N
mx, ) = (1 = u =2 Y, p(n)dlx - g; (1)}, (4.13)
i=1
and the peaks in u are delta functions in m.
Substituting (4.14) into (3.27) and using the identity (3.22) yields
evolution cquations for g; and p;:

N
g; = E pje"IQi—Q_i[’

i=t
N

pi=p L pisenlg; — qp e~leal
i=1

(4.16)

These equations are Hamilton’s canonical equations, with Hamiltonian H,,
given by substituting the ansatz (4.14) into the integral of motion H, in
(3.25), yielding

N
HA = Jz' E pi.pje_lqj—qjl = 'ZL.HI lN:soliton' (4-17)
Li=1
Hamiltonians of this form describe geodesic motion. The peak position
g;{t) is governed by geodesic motion of a particle on an N-dimensional
surface whose inverse metric tensor is

giq) =e7lv74l,  qeR" (4.18)

The metric tensor g; is singular whenever ¢; = g;.
For the case N = 2, the Gaussian curvature of this surfacc is

2 + e‘ﬂ'l“fll 41
5(ql_QZ)_'(;[q—‘—_q‘;f'_i_—lj'i' (4.19)

This two-dimensional surface is convex (negative curvature) with a peaked
ridge along g, = g,, and it is asymptotically flat. The geodesic dynamics on
this surface is completely integrabic, since the corresponding two degree of
freedom Hamiltonian system (4.16) possesss two functionally independent
constants of motion. We will show that the system (4.16) is compleately
integrable for any N, thereby justifying the term “‘N-soliton’ solutions
for (4.14).

‘We integrated equation (3.20) numerically with a variable-order, variable-
time-.step Adams-Bashford-Moulton method. The spatial derivatives were
approximated by a pseudospectral discrete Fourier transform. We monitored
the conservation laws and varied the accuracy of the integration method
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petween 1076 and 10~% per unit time and the number of spatial modes was
varied between 256 and 1024 to ensure the solutions were well converged.
We define the initial conditions for the calculation shown in Fig. 4 to be the
sum of solitary waves with velocities 1.0, 0.5, and 0.25 centered at x = —15,
0, and 15 in a periodic domain between —25 and 25. The space-time
contour plot illustrates the robust nature of the solitons and the phase
shift caused by the collision. Note how the slow soliton (c = 0.25) is shifted
more forward in the collision with the fast soliton (¢ = 1) than it is when
colliding with the medium-speed soliton (¢ = 0.5). Also note that the
¢ = 0.5 soliton is shifted back when it collides with the ¢ = 1 soliton.
These phase shifts are calculated explicitly in the next subsection. We have

Time
—

Fi1G. 4. The initial conditions are solitary waves with velocities 1.0, 0.5, and 0.25 centered at
x = —15, 0, and 15 in a periodic domain between —25 and 25. This space-time plot of the
dynamics of the solution demonstrates the robust nature of the solitons. Note the phase shift
in the position of the peakon after a collision.
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performed similar numerical experiments with up to five solitons colliding
simultaneously and shown that the solitons remain intact after hundreds
of collisions.

D. Two-SoLrroN DYNAMICS

Consider the scattering of two solitons that arc initially well separated
and have speeds ¢; and ¢,, with ¢; > ¢; and ¢; > 0, so that they collide. The
Hamiltonian system (4.16) governing this collision possesses two constants
of motion, Hy and H,, expressed in terms of the canonical variables as

Hy=p,+p=¢ + ¢,
Q 1 2 1 2 (420)
Hy = L(p + pD) + pypye~lomal = 1k 4 o).
Next, we transform to sum and difference canonical variables
P=pn + 1, =g + Gz,
1 2 Q Fe 2 (4.21)
P=P1 Das qg=4q — 4,
obeying the equations
P=0, O =P + ey
. . o ’ (4.22)
p=4P* - pPlsgn(@e™™, g =p( - e,
that are generated by the Hamiltonian
H=4PY1 + e 9y 4 Lp%(1 — e7lol) = ¢ 4 2. 4.23)

Notice that if the peaks were to overlap, thereby producing ¢ = 0 during
a collision, there would be a contradiction H = (¢; + ¢,)* = ¢ + ¢, unless
p were to diverge when the overlap occurred.

In solving Eqgs. (4.22), the second pair decouples from the first one and
can be solved directly. The solutions for Q and P can then be found easily,
and after some manipulation, we have

e, = ¢
(e + def)(yer= + acj) |’

g=-log
(4.24)

Y c)e €D — dei¢y)

e pe~ = 4 4e e,
Here y is a constant specifying the initial separation of the peaks, and ¢, and
¢, are the asymptotic values of their speeds, or amplitudes.
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The divergence of p in Eq. (4.24) associated with soliton overlap can only
occur when ¢, and ¢, have opposite signs. That is, only “*head-on’’ collisions
can lead to overlapping peaks. The solutions of (4.24) in the perfectly

antisymmetric ‘‘soliton-antisoliton’’ case ¢, — —¢, = ¢ simplify to
>4 2
’1 devy et
g = —24log yez,_-H..Y T 4(.‘2 3
(4.25)

—2ct 2
e + dc
p==%2 2 7 2
ye dc

We choose y = 4¢?, so the soliton-antisoliton collision occurs at time
t = 0 at the origin x = 0. For this choice of y,

+2c

= —log sech®(ct), - 4,26
q og (ct) P = e (4.26)
The resulting solution of Bq. (3.27) is
- ¢ ~le—a@72] _ ,-letae2]
u(x, 1) tanh(eD) [e e 1. “4.27

Hence, by (3.22), (¢f. (4.15)),

2 1
mx,t) =u— u, = m [J(X - iq(t)) - r‘)'(x + %q([))] . 4.28)

The behavior of this solution in the neighborhcod of the symmetric
soliton-antisoliton collision is shown in Fig. 5. The initial data is a positive
soliton traveling to the right with speed ¢ = 1 and a negative solition
traveling to the left with speed ¢ = —~1. In Fig. 3, just before the center of
the collision, the numerical solution is flat, except for the two spikes at the
point of impact. These spikes quickly decay to zero and the solitons
reemerge and continue on their way. The numerical solution introduces
some dispersive errors that can he seen in the space~time plot in Fig. 3.

As Fig. 5 shows, the peaks approach each other, while their amplitudes
tend to zero, reaching zero just at the point of overlap at x = 0. At this
point, # and u,, both vanish. However, their product w,, = —um + u’
(appearing in the third term of (3.27)) tends to a sum of delta functions as
t goes to zero, since at any time the solition-antisoliton solution satisfies,
by (4.27) and (4.28)

Uiy = —207[0(x — $q(1) + 8(x + 1q)) + u. 4.29)
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FiG. 5. A soliton traveling to the right with speed ¢ = 1 collides with a soliton traveling to
the left with speed ¢ = —1 and reemerges intact after the collision.

Thus, at the point of overlap, the right-hand side of (3.27) becomes the
derivative of a delta function, and the evolution for & — u,, proceeds: The
peaks redevelop and depart again, as though they had passed through each
other. As mentioned, the difference of amplitudes p in (4.26) goes to
infinity at the moment of overlap.

Thus, the soliton-antisoliton collision displays the steepening behavior
discussed in Section IV.A. The slope becomes vertical just at the point of
overlap, where, however, the amplitude of the solution becomes (every-
where) zero right at the moment of overlap.

E. PHASE SHIFTS

From the definitions (4.21), equations (4.22), and the solution (4.24)
for g (the relative position of the peaks) the two-soliton dynamics can be
completely solved. In particular, we compute here the phase shifts, i.e., the
shifts in asymptotic positions for # — o, that the solitions experience after
interaction.

Let the subscripts 1, 2 denote the solitons moving with speed ¢, ¢,
respectively, as + — —oo0, with ¢; > ¢,. The position of the peak at inter-
mediate times ¢ is

qi(t) = et + Flogldy(c, — &)1 — loglyc® ™Y + 4cf],  (4.30)
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for solition 1, and
a:(t) = &t — logldy(e, — o] + loglyc® ™" + 4],  (4.31)

for solition 2. In the limit ¢ — —ro these formulas show that the solitons
exchange their asymptotic speeds, or equivalently, their momenta and
amplitudes, as

gi(9) e i, go(f) m o f.

Thus, as ¢ = +o the solitions reemerge unscathed, the faster (and larger)
soliton ahead of the slower (and smaller) onc. The only cffect of the inter-
action is exhibited in the asymptotic positions of the peaks, which are
shifted from the positions they would have occupied had no interaction
taken place.

Defining the phase shift for the fast solition (‘1’* as f — o) to be

Age = g +o) — qy(—),
and similarly for the slow solition (2’ as ¢t = —e0),

Ag, = g,(+x) — gy(—),
we then have

2 PR
Agp = log[L} s Ag, = logli M] . (4.32)

(er — )? <3

These formulas show that when c¢,/c, > 2 both solitons experience a

forward shift. For 1 < ¢;/¢, < 2, the faster soliton is shifted forward while
the slower soliton is shifted backward. The case ¢ /¢, = 2 is the turning

point where no shift occurs for the slower soliton (see Fig. 6).
Y. Conservation Laws
We consider solutions of Eq. (3.27) («x = 0) defined on the real line that

vanish at infinity with bounded H,. The case x # 0 follows in a similar
manner. In the case k = 0, (3.27) has a number of extra conservation laws.

Because of the conservation form, the total momentum,

Hy = S dx m, (.1)

is clearly conserved. Also, by construction (3.27) conserves the Hamiltonian
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~-20 -10 0 10 20

Fra. 6. This space—time contour plot shows the evolution and phase shift when two peakons
with speeds 1 and 2 collide. In this situation, the slower soliton does not experience any

phase shift,

H, in (3.25), and the Casimir for the Lie-Poisson bracket,

H, = [dxxfn_z". 5.2)

The Casimir H_, is distinguished by its property of Poisson commuting
under the bracket defined by the Hamiltonian operator md + dm with any
functional of only the momentum density m.

In seeking additional conservation laws, it is helpful to potice that Eq.
(3.27) follows from an action principle, & = 0, with

£=1 S dt S dx [0 by — Per) + 63 + Drd5], (5.3)

because variation with respect to ¢ produces (3.27) with u replaced by ¢,.
The Hamiltonian formulation using the momentum canonically con-

jugate to ¢,

(5.4)

g
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gives the following Hamiltonian for the ¢ dynamies:

H,

fl

1 [ dx (62 + ¢.p%),

5 j dx (® + uul). (5.5)

The canonical Hamiltonian dynamics is

ot
5¢ Su )

om

my = (5.0)

The last expression defines a second Hamiltonian structure for Eq. (3.27).
The two Poisson structures

B, =0-9, B,=0m+ md, (5.7
with
SH, oH,
=-B—2=~By—= .
i o By (5.8)

are compatible. That is, their sum (or any other linear combination) is
still a Hamiltonian operator (see Olver, 1986). This means Eq. (3.27) is
bi-Hamiltonian and, therefore, has an infinite number of conservation
laws. These laws can be obtained by defining the transpose recursion

operator ®T = B{le, which leads from one conservation law to the next,
according to

é_H_f_ = (RT 5Hn—l

Sm o n=2012,.... (5.9

The operator ®T defined this way recursively takes the variational
derivative of H_, to that of Hy, to that of H,, and then to H,.

The next steps are not 80 easy, however, since each application of the
recursion operator introduces an additional convolution integral into the
variational derivative of the next constant of motion in the sequence.
Correspondingly, the recursion operator ® = R, By ! leads to a hierarchy of
commuting flows, defined by K,,,, = &K,

6Hn aHn—l

m§n+1) - Kn-(-i[m] = _Bl Sm = _BZ Sm

= B, B 'K, [m],

n=9012,....

(5.10)
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The first three flows in the hierarchy are
mP =0, mP=-m, m®P=-md+amu, G.11)

the third equation being (3.27). The fourth flow in the hierachy. K,. is

written in terms of u as
R
&y —lx—
m* = Uy — Uy = (U — Uy) S el "[3uuy = 2uyuy, — Uy, ] dy
—r

+o
—lx— 2 2
+ '%(ux = Hyye) S e Ix yl[%u - %uy - uuyy] dy.

- (5.12)

By construction, this cubically nonlinear flow commutes with the other
flows in the hierachy, and so it also conserves H_,, Hy, H,, H,, and s0 on.

The recursion relation (5.10) can also be continued for negative n. The
conservation laws generated this way do not introduce convolutions, but
care must be taken to ensure that the conserved densities are integrable.
All of the Hamiltonian densities in the negative hierarchy are expressible in
terms of m only and do not involve w. Thus, for instance, the second
Hamiltonian in the negative hierachy is given by

SH_, SH_,
By——=8,—— 5.13
i Jm 2 Jm 1 ( )
which gives
1{*™[1 m? 2
H—Z miS“m [Zm—;;z—:r;ﬂ;] dx. (5.14)

The integral in this expression may not exist for solutions m of (3.27);
however, the analog of H_,,, n = 2, 3, ..., seems well defined for the family
of equations (3.20), obtained by replacing m with m + x in the integrand
and subtracting an appropriate constant for convergence as x — %o,

Remark. The flow defined by (5.13) is very similar to the Dym equation
{(Ablowitz and Secgur, 1981), the vuly difference being the presence of an
extra spatial derivative,

m, = (3 — aﬁ(ﬁ). 5.19

The consequences of adding the derivative 9 to this known completely
integrable Dym equation are worth some extra investigation. An indication
that this term can be very important will be given in the discussion of the
commutator form of (3.27).
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vI1. An Isospectral Problem for the Unidirectional Model

This section expresses Eq. (3.27) as the compatibility condition between
a time-independent Sturm-Liouville spectral problem for an eigenfunction
w(x, £) and an equation of evolution for this eigenfunction. We seek the
spectral problem associated with (3.20) by using the recursion relation of
the bi-Hamiltonian structure, following the Gel’fand and Dorfmann (1979)
technigue. Let vs introduce a (spectral) parameter A and multiply by 1" the
nth step of the recursion relation (5.10). Treating both sides of the recursion
relation as terms of a power series and formally summing the series gives

o a0 d oH
B A"—~ = \B Rl s ind Yy 6.1
: ngﬂ om 2 ngo om ®.1)
or, by introducing
- n JHH
W, 5 4) = ):1 52

we have

By (x, 50y = AByyP (v, ; 1), (6.2)

This equation constitutes a third-order eigenvalue problem for the eigen-
function ¥, which can be reduced to an ordinary Sturm-Liouville second-
order problem. It is easy to show that if y satisfies

1 1
W — [Z - _z—i'm(x’ f)}l/ =0, (6.3)

then y* is a solution of (6.2).
Now, assuming A is independent of time, we seek, in analogy with the
KdV equation, an evolution equation for w of the form

w, = ay, + by, {6.4)

where @ and & are functions of w and its derivatives to be determined by the
requirement that the compatibility condition ,,, = y,,, between (6.3) and
(6.4) implies (3.27). Cross differentiation shows that

b=—%a, and a=-(1 +u), {(6.5)
and so
W= —( + )y, + duy (6.6)

is the desired evolution equation for .
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Remark. The spcctral problem for the family of equations (3.20)
is simply obtained by replacing m with m + « in (6.3), while the time
evolution equation (6.6) remains the same.

A. SPECTRAL STRUCTURE

If m vanishes at x = +co sufficiently fast for H, to be bounded, then the
spectral problem (6.3) has a purely discrete spectrum. In fact, the limiting
behavior of w is

W) — 2, .7

x| o

which implies that the eigenfunctions always decay exponentially at infinity.
For instance, if the initial condition u(x, 0) is chosen such that

u(x, 0) = A(g ¢* — 2 sinh x arctan(e*) — l) ,
i.e., mix, 0) = A sech®(x), 6.8

for an arbitrary constant A4, then it is easy 1o show {Camassa and Wy, 1991)
that the eigenvalues 1 for (6.3) are given by

24

Anzm, n=1.2,.... (6.9)

This formula shows explicitly that A = 0 is an accumulation point for the
discrete spectrum and the eigenvalues converge to it as 1/n%, n ~+ oo, a fact
that can be shown to hold in general for an initial condition decaying
exponentially fast at infinity.

Notice that as soon as ic # 0, i.e., for an equation in the family (3.20), the
w limiting behavior becomes

1 &
wix) o exp(tx i ﬁ) s (6.10)

and 50 a band of continuous spectrum emerges out of the origin in the
interval 0 < A = 2ix. We remark that the peculiar feature of the disappear-
ance of continuous spectrum in the limit £ — 0 is essentially caused by the
presence of the constant 1/4 in (6.3), which in turn is generated by the first
derivative operator in B,.

In Fig. 7 we see that initial data given by (6.8) breaks into a train of
solitons.
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Fic. 7. The initial data #(x, 0) = (7/2)e” — 2 sinh x arctan{e¢*) — 1 breaks into a train of
peakons as it evolves by Eq. (3.26).

B. TaE IsosPECTRAL PROBLEM FOR THE EXTENDED Dym EQUATION

The eigenvalue problem (6.3) is also isospectral for the extended Dym
equation (5.15), since this equation belongs to the same hierarchy (5.10) of
flows as Eq. (3.27). The appropriate time evolution law for w can be found
in a similar fashion as for (6.5). We look for , defined by (6.4) and notice
that in genera! the evolution equation for m, produced by the compatibility
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Condition ll/,\‘,\‘f = wzxxy iS

m, = (B, — AB)a, b= —Lta, + const. (6.11)

Hence, it is easy to see that the choice

1/ 1 1 8H_,
=3 (2\_/m> T A om ®.12)

reproduces the desired evolution equation. Thus, (5.15) is the compatibility
condition between {6.3) and

1 1 m,
W:—a[wwx+;n"mw]- (6.13)

C. A SPECTRAL PROBLEM FOR THE N-SOLITON MECHANICAL SYSTEM

For the N-soliton sclution (4.14) of Eq. (3.27), m(x, t) becomes simply a
sum of delta functions:

mx, 1) =2 Y pi(t) 8lx ~ g; (D). (6.14)

i=1

Rewriting (6.3) in integral form as

+e0

Aw(e, ) =4 S e A2 m(y, Ow(y, ) dy (6.15)

—oo

and substituting the expression (6.14) for m yields

N
Ap(x, 6y = L pe U2 y(g,, 0, (6.16)
i=1

which in particular implies

N
Mg, ) = ¥ pre” % yig,, ) dy. (6.17)
Jj=1

This expression constitutes an algebraic cigenvaluec problem for the
eigenvector

W) = wla), D),

LY = A%,
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with the matrix

Ly(t) = pje~larai?, (6.19)
or
L=PQ, p=diaglpl, Q;=e (6.20)
The evolution equation for ¥ can be obtained directly from (6.6):
d N N
—| L Ly¥) = ¥ A%, (6.21)
dr\ ;=1 i=1

where the matrix 4 is given by

Ay=1%
k

+ [sgnig; — q;) — sen(g; — gp)le %WV 2e lemkdp.p ) (6.22)

npg =

fsen(g; — e\ %2p, L.
1

The evolution equation (6.21) and the eigenvalue problem (6.18) imply
that L evolves according to

LL=AL - LA = [4, L], (6.23)

which shows that constants of motion can be generated by taking the trace
of powers of L:

d
—(Tr ™) = 0.
0

For instance, the first two constants of motion are TrL = }, J’-‘L 1 P = Hy
and TrL? = H,.

The eigenvalue problem (6.18) explicitly shows that, in analogy with the
two soliton case, soliton overlap (g; = g; at some time ¢ = T) can only
occur if the carresponding momenta p;, p; diverge to infinity. In fact,

N
det L(t) = [] A4 = const. 6.24)
k=1

and the eigenvalues A, are determined by the asymptotic behavior of the
N-soliton solution for { = —oo:

N N N
detL = P(~=)Q(-) = [ pel-) = [] cx = [I A. (6.25)
k=1 k=1 k=1
Now, when g;(f) = g;(f) (for t = T), det @ — 0, and so (6.20) and (6.24)

imply [[¥., P«(t) = oo in order to keep det L = const. Time invariance of
the Hamiltonian (4.17) then shows that |p,| = |p;| — « with p;p; < 0.
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VII. Discussion

We have derived the model equation (1.1) for dispersive shallow-water
motion, under the assumption of unidirectional motion and using an asymp-
totic expansion directly in the Hamiltonian for Euler’s equations. This model
equation has a number of remarkable properties. It is bi-Hamiltonian, and
hence it possesses an infinite number of conserved quantities that are in
involution and are recursively related. This implies the equation is completely
integrable and has other properties {¢.g., Lax pair and inverse scattering
transform) associated with complete integrability for other soliton equa-
tions, such as the Korteweg-de Vries equation. In the present chapter, for the
case k = 0, the N-soliton solution for this equation has been introduced, the
two-soliton scattering process has been analyzed, and the phase shift for
soliton-soliton collisions has been computed. The soliton-antisoliton colli-
sion exhibits some interesting behavior, especially its amazing recovery from
nearly complete annihilation. The steepening lemma for this equation in the
case k¥ = 0 shows that any sufficiently negative slope at an inflection point
will reach vertically in a finite time. In particular, a localized initial distribu-
tion evolves to develop verticality and then breaks up into a height-ordered
train of peaked solitons moving to the right, with the tallest ones ahead. The
numerical studies confirmed the central role of these peakons in the dynamics
of the solution. Like the solitons for classic integrable equations, these
solitons develop from arbitrary initial data, are nonlinearly self-stabilizing,
and maintain their coherence after colliding with other solitons.
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